Coulomb Effect: A Possible Probe for the Evolution of Hadronic Matter

نویسنده

  • T. Osada
چکیده

Electromagnetic field produced in high-energy heavy-ion collisions contains much useful information, because the field can be directly related to the motion of the matter in the whole stage of the reaction. One can divide the total electromagnetic field into three parts, i.e., the contributions from the incident nuclei, non-participating nucleons and charged fluid, the latter consisting of strongly interacting hadrons or quarks. Parametrizing the space-time evolution of the charged fluid based on hydrodynamic model, we study the development of the electromagnetic field which accompanies the high-energy heavy-ion collisions. We found that the incident nuclei bring a rather strong electromagnetic field to the interaction region of hadrons or quarks over a few fm after the collision. On the other hand, the observed charged hadrons’ spectra are mostly affected (Coulomb effect) by the field of the charged fluid. We compare the result of our model with experimental data and found that the model reproduces them well. The pion yield ratio π−/π+ at a RHIC energy, Au+Au 100+100 GeV/nucleon, is also predicted.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MULTIHADRON PRODUCTION FOR e e FOR FROM 50 TO 61 GeV, C. M. ENERGIES AND COMPARISON WITH MULTIHADRON PRODUCTION IN HADRONIC INTERACTIONS

Average values of< 1- T >where T is the thrust are presented for e: e: AMY data and are compared with their values in hadronic interactions. As far as possible, similar analysis techniques have been employed in the two different interactions. Similar variation with E is observed for this average in both data. The values of < PT> and < PL > relative to the thrust axis in e e are simila...

متن کامل

Effective Hamiltonian of Electroweak Penguin for Hadronic b Quark Decays

In this research we work with the effective Hamiltonian and the quark model. We investigate the decay rates of matter-antimatter of quark. We describe the effective Hamiltonian theory and apply this theory to the calculation of current-current ( ), QCD penguin ( ), magnetic dipole ( ) and electroweak penguin ( ) decay rates. The gluonic penguin structure of hadronic decays is studied thro...

متن کامل

Exotic hadrons from quark clustering at FAIR

The CBM experiment at FAIR will probe nuclear matter at high densities and comparatively low temperatures, giving access to a region of the phase diagram of QCD not yet studied in detail. One expects to find highly compressed hadronic matter and, at higher energies, deconfined quark matter, possibly subject to strong correlations. These conditions could be favourable to the production of exotic...

متن کامل

The role of electroweak penguin and magnetic dipole QCD penguin on hadronic b Quark Decays

This research, works with the effective Hamiltonian and the quark model. Using, the decay rates of matter-antimatter of b quark was investigated. We described the effective Hamiltonian theory which was applied to the calculation of current-current (Q1,2), QCD penguin (Q3,…,6), magnetic dipole (Q8) and electroweak penguin (Q7,…,10) decay rates. The gluonic penguin structure of hadronic decays ...

متن کامل

First mesospheric in-situ measurement in Iran using sounding rockets and plasma impedance probe (PIP)

This paper reports on the progress for the first development of rocket probe for in-situ measurement of ionospheric plasma parameters in Iran. The designed probe known as Plasma Impedance Probe (PIP) will be used to measure the electron density, electron-neutral collision frequency, background magnetic field, and temperature in the mesospheric and in the altitude range of 70 km to 150 km. This ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008